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Abstrad--A method of characteristics algorithm for the equal velocity, unequal temperature model of 
one-dimensional two-phase flow has been implemented. This algorithm uses a mesh of characteristics 
dz/dt = u +-a, and has greatly reduced numerical diffusion effects when compared with finite difference 
methods, making it useful for benchmark solutions and model testing. Results are presented from its 
applications to two standard problems. 

INTRODUCTION 

The analysis of transient two-phase flow phenomena is of much interest in the design and 
licensing of nuclear power reactors. The simplest model, in which the vapour and liquid phases 
have equal velocities and temperatures (the EVET model), is widely used (Martini et al. 1976, 
Mathers 1976, Turner & Trimble 1976). However, the importance of thermal non-equilibrium 
and unequal velocity effects has stimulated interest in more sophisticated (or perhaps more 
physically representative) models (Banerjee et al. 1978, Boure et aL 1973, Brittian & Fayers 
1976, Solbrig et al. 1976). The model considered here is of intermediate sophistication; the 
phases have the same velocity, but are allowed to have unequal temperatures (the EVUT 
model) (Hancox et al. 1975). 

Rapid finite difference solution procedures are being developed to study the EVUT model. 
These methods are subject to numerical diffusion and other numerical errors. To determine the 
magnitude of these errors, a benchmark solution procedure is needed which provides close 
approximations to the true mathematical solutions of the EVUT equations. Also, to determine 
the interphase transfer coefficients we use specially designed experiments along with bench- 
mark solutions to the EVUT equations. Because these equations are of the hyperbolic type, we 
have developed a benchmark solution based on a method of characteristics wave-tracing 
procedure. The solution scheme is similar to one previously used for the same purposes with 
the EVET model (Hancox & Banerjee 1977, Hancox et al. 1975). This paper describes the 
EVUT model, the wave-tracing algorithm used in the benchmark program, and some results 
obtained using this program on standard problems. 

We begin by writing the conservation-law equations for one-dimensional two-phase flow, 
neglecting viscosity and axial heat flux terms (Hancox et al. 1975, Boure 1973): 

a +a 
A ~-[ a~ok ~z AakPkUk = mik [1] 

a -~z a d Z  
A -~  a~OkUk + Aa~kUk 2 + Aak ~'~ Pk = mikUk -- ":ik -- ":wk -- Aakp~g -~Z [2] 

1 2 a 
a a ~ O k ( h k + ~ U k ) +  aot~okUk(hk+~Uk2)--aak a A-~-[ -~  -~ Pk 

( 1 )  
= qik + qwk + ZikUk + mik hk + ~ Uk 2 -- Aa~kUkg - ~ .  [3] 

In these equations, the subscript k ( = f  or g) denotes the phase (liquid or vapor). The flow 
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quantities ak, PR, Uk, Pk and hk are  the volume fraction, density, axial velocity, pressure, and 
specific enthalpy of phase k respectively. The source terms m~k, zig, q~k and qwk are the mass 
transfer rate at the interface, interfacial friction, interfacial heat transfer and wall heat transfer 
into phase k respectively. A is the cross-sectional area of the duct, Z the elevation, g the 
gravitational acceleration, and t and z are the time and space independent variables. 

The phase volume fractions satisfy ag + a t = 1. We have assumed gravity to be the only 
external body force acting. In order that mass, momentum and energy be conserved at the 
interface between phases, the following relations also must hold: 

mig + mq = 0 

nligUg - "rig + tnifl41 - "l'if = 0 

( 1U,2) + q i , + r i f u f + m i f ( h 1 + ~ u ,  2) =0. qig + TigUg "{- mig \ h  e + 

[4] 

[5] 

[6] 

In the EVUT model, we assume Pl = Pg = P, ui = Ug = u and ~'it = ~'~g = 0. Keeping [1] and [3] 
from both liquid and vapour, and summing the momentum equations [2] for the two phases, we 
obtain, after some manipulation, 

0 + 0 otkpkU mik 1 d A  
akPk dZ = - ' ~  -- akPkU A d z  

Üu Ou ~zz Zwl +'r.,e, d Z  
p ~-  + pu -~- + = -  A Pg dz  

0 + Otk,OkU O ^. Op _. , Op _ qik + qwk + "i'wkU 
akpk ~ hk ~Z hk - ~k ~-{ -- Uk,, -~Z -- A 

[7] 

[8] 

[9] 

where the mixture density p = a~pg + oqpf. 

In order to close this set, constitutive relations are needed. The first of these are the 
equations of state, in the form Pk = 0k(P, hk). The duct cross section, A(z) ,  and elevation, Z(z) ,  

are specified for each problem. Before giving our formulae for qik, q,~k, "r,,k and m~k, we note the 
following conditions: In order that [7]-[9] be non-singular, and reduce to the single-phase 
equations when ak = 0 or 1, we require lim (qik/Otk), (qwk/Ctk),  ('rwk/Otk) and (mik/ak) to be finite, 

ak-,.O 

and lim q i d ( 1 -  Otk) and mik/(l- Otk) to be finite. We will assume in what follows that the 
a~k --~1 

constitutive terms qik, qwk, Twk and mik depend only on the local instantaneous flow variables. 
That is, derivatives of the flow variables will not be allowed in these terms. 

To specify qik, we let qik = )t ik(Ts -- T k ) ,  where A~k is the interface thermal conductivity, then 
w r i t e  /~ik = KikAipkCpk, where A~ is the interfacial area per unit length, and K~k has the 
dimensions of m/sec. Replace Cpk(Ts - TR) by hks - hk, and let KikAi = afc tgA/ t ik .  The parameter 
t~ I can be considered to be a rate constant for the inteffacial heat transfer process, and models 
of any desired degree of complexity can be constructed by appropriate calculations of tik. In our 
case, we have assumed tlk= constant, which is the result achieved by assuming Ai oc ar~gA, 

constant cpk, and constant K i k ;  our form for qik is qik = c t l c t g A p k ( h k s -  hk)/tik. This form was 
chosen not because of any expected physical validity, although it should be adequate as a rough 
approximation, but because of its simplicity. This is in keeping with the intent of the program, 
which is used as a mathematical benchmark. From [4] and [6], m i s = - m ~ l  = 
- (qi l  + qig)/(hg- hi). For q~k we use qwk = akqw where qw is given as a function of z; this 
simplified model neglects the heat content of the wall. For the frictional terms, we use 
Zwk = awkAF,  with F = ((4fiDe)+ (K/l))(utu]/2), and the equivalent diameter De and distributed 
loss coefficient K/! are given functions of z. The friction factor/', when a t = l, is 0.046 Rf -°'2, 
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for R t > 1462.27, and 64/Rf for Rf < 1462.27; when ag = l, Rf is replaced by R e. For 0 < at < 1, 
f---  ~'*[ ( - !  = 1), where ~-* is the two-phase multiplier (Hancox & Nicoli 1972): 

~-* = 1 + X(fl - 1){1 + 3.57 exp (-0.00994y)[1 - exp {-4.96 (1 - X)}]} [10] 

where X = agp~/p is the flow quality, and 

vlul 
y = [~pf(pf - pe)~f] 'i3 

-Pe \~ t /  " 

Here ~k is the dynamic viscosity, and RE = pklul/~k is the Reynolds number. The division point 
R = 1462.27 is chosen so that the formulation will be continuous. 

After using the equations of state and the differentiation chain-rule for the first two terms of 
[7], and taking the appropriate linear combinations of [7], [8] and [9], we obtain the charac- 
teristic form: 

Ou Ou ] z 
~t +(u+a)~z+pa[~-~+(u+a) -~J=pa  C,+aC2 [11] 

Op Ou 
~t +(u-a)~-~-pa[~-[+(u-a ,~zz]=pa2C, -aCz  [12]  

aa de ~,J-'( _-5:-~_ - - - ~ _ 1  1 ~rop+_ ~aP] - - +  u --~- + a (1  - = C3 [13] at ~,Sa, p,a, ] tat  u 

~t + u Oh__at 1 u aP 
az---p~g[~t + ~-z] = C4 [14] 

Oh2 + u Oh_~ 1 rap_ ap ] 
at az - ~ t-g* u TzJ = c~. [15] 

and 

W e  def ine  a = ag = 1 - a t, 

The G are given by 

and 

a_Z= f a 1 - a ' l  
+ J, 

ak-2___ a,°k 
ahk " 

(_1 l~mis l d A  ot d p_s_ C 4 _  ~ 
;,ah, 

C2 = - TM + ~.,e dZ 
A -Pg-~z '  

(1 -a)  oV_~ C. 
oh, ~ '  

PfPe ~ LPe dng pf anf J 

C4 = qie + q ~  + ~'~u 
,,,pe A 

C~ = q~f + qwf + ywlu 
(1 -a)piA 
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After specifying the initial state of the system, A(z), Z(z), q~(z), D,(z), K/l(z), the equations of 
state Pk = pk(P, hk) along with Opk/Op, apk/ahk and ~k(P, hk), and the boundary conditions, the 
mathematical specification of the problem is complete. The boundary conditions used are the 
following: At a closed boundary, u = 0. At an outflow boundary, p is specified, provided that 
lul < a; is this condition is not satisfied, lul = a is specified instead, and p is increased until 
agreement is reached. At an inflow boundary, p, a, hi and hg are specified; if this leads to 
lu I > a, we specify lul -- a. 

Note that the assumption of no derivatives in the constitutive terms is necessary in order to 
achieve this form. If derivatives of the flow variables were to appear in the constitutive terms, 
the structure of the equation set would be altered. The characteristic directions (u + a, u - a, u, 
u, u) would be changed, and in general would not be real. The method of characteristics 
described below requires: (a) that the system of equations be hyperbolic (real characteristics) 
and (b) that the characteristic equations be expressible analytically. Therefore, this method may 
not be applicable to models in which such derivative dependence is allowed. 

WAVE-TRACING ALGORITHM 

Equations [ 11]-[15] may be rewritten in the form of paired characteristic and compatibility 
relations, as 

dz = (u + a) dt; dp +pa du = (pa2C~ + aC2) dt, [16] 

dz = (u - a) dt; dp - pa du = (pa2C~ - aC2) dr, [17] 

d z = u d t ; d a - a ( 1 - a ) [ p /  1 ] i2 pea2 dp =C3dt, [18] 

dz = u dt; dh~ - l d p  = C4dt, [19] 

1 
dz = u dt; dh I - ~ dp = C5 dt. [20] 

These equations approximated by simple first-order difference equations, in which all 
coefficients are evaluated by taking the averages of their values at the two points involved. The 
grid of points at which the solution is calculated is not the usual grid of points fixed in space 
and time; rather, it consists of the points at which a set of characteristic curves dzldt = u +- a 
intersect. (These curves are the paths along which small-amplitude sound waves propagate; 
hence the term "wave-tracing".) For simplicity, we will call these curves "waves", and their 
intersection points "nodes". A second set of points, called "particles", are at the intersection 
points of the waves with a number of "streamlines" dzldt = u. The number of streamlines used 
in the discretization is, in general, different from the number of waves defining the primary 
mesh. This secondary mesh of "particles" is used mainly for diagnostic purposes, to aid in 
studying the motion of the fluid itself. The algorithm used to calculate the independent and 
dependent variables at a node N i is illustrated in figure 1; the notation used is A~mn = ~,~ -~n, 
[4J]mn = ~ff,, + ff~). Since the coefficients in the difference equations depend on the solution at 
node N s, an iterative technique is used to generate a self-consistent solution. The interpolated 
point O is discarded once the solution for node Ni is known. Once the solution at ~ has been 
calculated, the particles Pi lying between nodes Ni_l and Ni÷l are advanced to their new 
positions (see figure 2). Again, an iterative method is used. 

A number of variations on this scheme are also possible. In the illustrated scheme, P~ and 
N~ were chosen because they are the nearest points to O on N/_IN}; they may be either nodes 
or particles. Instead, point O may be interpolated between Pi and Pi+t, or between Nj_~ and 
Nj+~. In either of these cases, the interpolation is (usually) not along a characteristic direction, 
as it is in the first case. Similarly, the particles P~ may be interpolated between alternate nodes, 
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,%zjj_l = [u+a]jjatjj_l 

APjj_I + [oa]jj_iaujj_l 

= [oa2C 1 + aC2]jj_iAtjj_l 
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Azj j+ l  = [ u - a ] j j _ l A t j j + l  

ADjj+I - [ c a ] j j + l A U j j + l  

= [oa2C I - aC2].j+iAt..+l 1 31 
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Atij' Azij' Aulj' APiJ' 

A~io Ahgio Ahfi o 
= 

Aaij' Ahgij' Ahfl j ' 

AZjo = [U]joAtjo 
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Ahfi ° - [O~] APjo = [C5]ioAtjo 
f Jo - 

A~io- [ a ( 1 - a ) ( ~ -  o l--~ag)]joAPio 

= [C3]joAtjo 

i i Figure 1. Algorithm used to advance a node from Nj to N~. Pi is a particle O the interpolated point; Pi and Nj are 
the nearest points to O on the line N~_~N) in this example. 

Ati~-i . 
At j j - 1  

AZij-1 = AuiJ-1 = APiJ-1 
AzJJ-1 AujJ-1 APJJ-1 

Figure 2. Algorithm used to advance a particle from P~ to P~. 

Azii  , = [ u ] i i , A t i i  , 

Ahgii, - [1]li,APii, = [C4]li,Atli , 
g 

Ahfll, - [~]ii,APil, = [C5]ii,Atli , 

Aail,- [a (l-a) (~ - ~) ]ll, APii, 

= [C3]li,Atll , 
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Nj_2 and N~ or Nj and N/+2. The first scheme, in which the interpolations are always along 
characteristics, has been found to be preferable. 

Boundaries must be treated specially. At an outflow boundary (see figure 3a), one of the 
characteristics lies outside the system. The two equations pertaining to this characteristic are 
replaced by z = z* and p = p*, where z* and p* are given (p* may be a function of time). At an 
inflow boundary (see figure 3b), we use z = z* ,  p = p * ,  a = a * ,  hg = h*,  h! = hy ,  together with 
the two equations for the one characteristic lying within the system. At a closed boundary (see 
figure 3c), z = z*, u = 0, and the three streamline equations [18]-[20] plus the two equations for 
the characteristic internal to the system are used. In the event of supersonic flow at an open 
boundary, when the above algorithm gives [u[ > a, the equation p = p* is replaced by lu[ = a, 
and p is adjusted iteratively until this choking condition is satisfied. 

The algorithm described here is a straightforward generalization to the EVUT model of one 
which has been previously used for the EVET model (Hancox et  al. 1975). The advantage of 
such a scheme, in which characteristic paths are followed throughout, is its small numerical 
diffusion. Since discontinuities in the solution must propagate along characteristics, methods 

azjj_l - [u+a]jj_iatjj_l N-~r~;i~* I 

APjj_I + [Pa]jj_iAujj_l ~ ~ ~ / I I A z j ~  
[U]joAtjo = [pa2C I + aC2]Jj_iAtjj_l 

- - - - -  Nj_l~_i T~-~AhgJo_ [#]joAPjo = [C4]joAtjo 

• [ ~l_ [ Ahfjo - [I]j°Apj° = [Cs]j°Atj° 

- -  , i i A 
Atll-i AZlI-I AUlI-I APlI-I V ~ N; Aajo- [~(l-a)(p--~f - p-~)]Jo PJo 

= Aal° = Ah~l° = Ahfl° [ = [ ] At 
Aall-i Ahgll-i Ahfll-ll (a) C3 Jo Jo 

Nj 

Azjj_I = [u+a]jj_iAtjj_l 

Apjj_I + [Pa]jj_iAujj_l 

= [pa2C I + aC2]JJ_iAtjj_l 

N 

Azjj_l = [u+a]jj_iAtjj_l 

Apjj_I + [Pa]jj_iAujj_l ~ _  
= [pa2CI + aC2]Jj-iAtjJ-iI T~ 

(b) 

~ ,  - [-~l]..,ap.., = [c.]..,at.., 
o g  d d  d o  ~ d o  d o  

~ Ahfjj, - [~fljj,Apjj, - [L5]jj,A jj, 

1 ] A 
~I . A~jj, - [~(l-a)(pf~a f - pg~ag) ljj, pjj, 
Nj' ~ Nj' = [C3]jjIAtjj' 

(c) 

Figure 3. Algorithm used to advance a node at a boundary from N} to Nj: (a) Outflow boundary; (b) Inflow 
boundary; (c) Closed boundary. 
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which do not trace the characteristics will diffuse any discontinuities. This is true even for those 
method of characteristics solution schemes in which a fized grid of points in space and time is 
used. On the other hand, if one wishes to study the flow at a given time or point in space, one 
must interpolate between the solution points given by the wave-tracing algorithm. This implies 
that some numerical diffusion will be present in plotted results, with scale length (or time) 
somewhat smaller than the mesh spacing (this is usually considerably smaller in these bench- 
mark runs than it would normally be in a finite difference solution). However, and in contrast to 
finite difference schemes, this diffusion is not present in the actual solution, and its effects do 
not accumulate as the solution proceeds in time. 

In practice, it is necessary to deviate somewhat from the algorithm outlined above. Since the 
sound speed is a very sensitive function of a, very rapid, but continuous changes may occur in 
the solution. In regions where such changes are present, it is necessary to use a very fine mesh. 
Since it is computationally inefficient to use such a fine mesh where it is not needed, a scheme 
for adding and deleting waves is necessary. By doing all interpolations along characteristics, we 
attempt to minimize spurious numerical effects introduced by this restructuring of the mesh. 

This wave-tracing algorithm has been shown to have much less numerical diffusion than 
finite difference methods (Hancox et al. 1975). However it is much slower, and more difficult to 
program. In addition, because of the iterative technique required to obtain the solution at each 
point, it is extremely sensitive to irregularities in the fluid properties and source terms. If the fluid 
properties (pk, Opk] oap, Opk[ Ohk, ~k and hks) o r  externally specified quantities ( dA/dz, dZ]dz, De, K/ ! 
and qwk) are discontinuous, we can expect difficulties. The fluid properties are calculated by 
table lookup and linear interpolation, thus ensuring continuity. However, the extremely rapid 
changes in sound speed still cause problems. 

S T A N D A R D  P R O B L E M S  

The algorithm outlined here has been tested on two standard problems, for which solutions 
have been obtained previously using the EVET model with both a method of characteristics 
and a finite difference algorithm (Hancox & Banerjee 1977). The first of these problems 
involves the transient created by application of a uniform heat source to a vertical upward 
flow of water in a pipe. The flow parameters are such that the equilibrium state, nearly reached 
after approx. 7 sec, is one in which the void fraction at the outlet is -0.6. Therefore a 
stationary boiling "front" is present. The second problem is based on the experiment of 
Edwards and O'Brien (1970) and involves the blowdown of a horizontal, closed-end pipe 
containing high enthalpy water, which is suddenly opened at one end to atmospheric pressure. 

The initial conditions, boundary conditions, and externally specified parameters for the first 
problem are given in table 1. The friction factor was not that specified earlier; instead, the 
simpler model [ = 0.005 was used to agree with the previous EVET predictions. The model used 
for q~, namely qik = a~agApk(hks- hk)/tik, as described previously, is of considerable interest. 
This formula is as simple as possible while satisfying the mathematical requirements of the 
model. The enthalpy difference was used instead of the temperature difference, mainly to avoid 
small discontinuity problems with the steam-water property routines at the saturation line, but 
as long as Ocpd~hk is not large, the two will be nearly equivalent. The energy conservation 
equation contains terms of the following form: 

Oh__zk + . . . .  (1 -- ak)(hk~ -- hk) ~_.. ". 
oat tik 

Neglecting the other terms for the moment, we note that a first-order explicit finite difference 
approximation to this equation will not give an adequate representation of the solution unless 
the time step At<tik/(1--ak); time steps At>2tik/(1--ak) will in fact lead to numerical 
instability. With a finite difference algorithm, it is possible to reduce At to ensure that these 
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Table I. Parameters for first standard problem 

Initial conditions 
u = 1.089 m s e c  

[ 7.102 MPa,  z = 0.0 m 
p = | 6.984 MPa,  z = 7.316 m 

It l inearly interpolated,  0.0 m < z < 7.316 m 

a = 0 . 0  
h l = 1.1847 MJ/kg 
hs = h . .  

Boundary conditions 
At z = 0.0 m: 

p = 7.102 MPa  
a = 0 . 0  

h I = 1.1847 MJ]kg 
hs -~ h~,. 

At z = 7.316 m: 

p = 6.984 MPA.  

Parameters 
A = 127.0 m m  2 

dA/dz  = 0.0 m 
dZIdz = 1.0 

f = 0.0o5 
De = 4.33 

f0.0m -j, 0.0 m < z < 1.181 m 
K/l = | 1.31 m -l, 1.181 m<z < 2.690 m 

|1.52m ~, 2.690m<z <7.316m 

~9.0 kW/m,2,690 m < z < 5.971 m 

qw = I. 0.0 kW/m,  e l s ewhere  

t~/= 0.01 sec  
t~8 = 0.01 sec .  

conditions are satisfied, although in practice this may not be acceptable because of the resulting 
increase in computation time. With the wave-tracing algorithm, the only way to reduce At is to 
reduce the spatial separation of the waves, and this causes a large increase in computation time 
as well as an increase in storage requirements. Therefore, we are forced to choose tik 
sufficiently large to correspond with the computational mesh. In the first standard problem, 
approx. 80-100 waves in each direction were used. This led to the choice t~k = 0.01 sec, since 
smaller values produced difficulties during the transient and caused the solution procedure to 
fail. 

In attempting to simulate physical problems, one should of course specify t~k on physical 
grounds, and then adjust At as necessary to obtain stability. However, in our case we are using 
the program primarily to perform mathematical benchmark testing and to study the mathemati- 
cal model. Therefore we are free to adjust parameters such as t~k for reasons of convenience, 
although it is still desirable not to deviate from the real world by unnecessarily large amounts. 

The mass flow rates, G, at the inlet and outlet, as predicted using the equilibrium (EVET) and 
non-equilibrium (EVUT) models, are plotted in figures 4 (inlet) and 5 (outlet). The slightly 
different rates observed before the onset of boiling near t = 1 sec, and in the final state at 
t = 7 sec, are due to slight changes in the property routines between the two runs. The delay in 
the onset of the transient in the EVUT model is related to the choice of tik ; smaller values of t,k 
produced smaller delays, but it was not possible to follow these cases through the transient. 
This delay is made possible by storage of the applied energy in departures from equilibrium (i.e. 
superheating of the liquid), and the greater the delay, the larger the amount of energy stored in 
this form. Therefore, when boiling became significant, the effect on the flow was greater, and 
the transient was more severe, when larger values of t~k were used. The EVET model 
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Figure 4. First standard problem--mass flow rate at inlet as predicted by EVET and EVUT wave-tracing 
programs. 

corresponds to tik = 0. The subsequent behaviour of the mass flow rates was quite similar in the 
two models. 

The pressure history at z --2.69 m, using the EVUT model only, is given in figure 6. The 
natural period of pressure oscillations in this system, before boiling starts, is 0.014 sec, and only 
the envelope of these oscillations can be shown on this graph. Before the boiling transient, the 
pressure history consists of damped oscillations which were initiated by the application of the 
external heat source. These oscillations were also observed using the EVET model (the two 
models are identical for single-phase flow) but are not reproduced in finite difference solutions 
because of numerical diffusion. The pressure spike at the onset of boiling is both later and 
stronger than for EVET predictions. The subsequent pressure history is similar in the two 
models, but there is considerably more noise in the EVUT curve, on a short time scale. The 
source of this noise has not been investigated, but it may be due to interchange of energy 
between the two phases on the t~k time scale, interacting with the natural pressure oscillations. 

The flow quality history at the outlet is presented in figure 7 and the quality profile at 
t = 7 sec is presented in figure 8. The transition from single-phase to two-phase flow was 
successfully handled by a simple scheme for adding and deleting waves, based on the ratio of 
slopes of neighbouring waves. This simple scheme runs into difficulties when the transition is 
steeper, as shown by the second problem. 

The second standard problem was a simulation of the Edwards & O'Brien (1970) blowdown 
experiment. The initial conditions, boundary conditions, and parameters are given in Table 2. It 
was not possible to drop the pressure instantaneously to atmospheric pressure at the outlet 
because of numerical difficulties. When an expansion fan was used to represent and in- 
stantaneous drop from 7.0 to 0.1 MPa at the outlet, the calculations became rapidly unstable. It 
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Figure 5. First standard problem--mass flow rate at outlet as predicted by EVET and EVUT programs. 
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Figure 6. Approximate envelope of pressure history at z = 2.69 m in first standard problem (EVUT). 
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Figure 7. Flow quality at outlet in first standard problem as predicted by EVET and EVUT programs. 
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Figure 8. Flow quality at t = 7.0 sec in first standard problem as predicted by EVET and EVUT programs. 

Table2.  Parameters for second standard problem 

Initial conditions 
u = 0.0 m/sec 
p = 7.0 MPa 
a =0.0 
hy = 1.0459 MJ/kg 

Boundary conditions 
At z = 0.0 m: 

u = 0.0 mlsec 

At z =4 .0m:  

f 3.4 MPa, t = 0.0 sec 
P = / 0.1 MPa, t > 0.005 sec 

[ l inear ly  interpolated, 0.0 sec < t < 0.005 sec. 

Parameters 

A = 804.2 m m  2 

dAIdz  = 0.0 m 
dZIdz = 0.0 

De = 32.0 nun 
K]I =O.Om -1 
qw = 0.0 W/m 
t~s = 0.005 sec 
t~ = 0.005 sec 
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was necessary to replace this fan by a two-point expansion fan from 7.0 to 3.4 MPa, just above 
saturation pressure, followed by a rapid, but not instantaneous, drop to 0.1 MPa. The time taken 
for this drop was set at 5 msec, since shorter times gave difficulty. The pressure drop at the 
closed end appeared to be instantaneous, within the resolution of the mesh used (see figure 9). 
This indicates that the effects of this slower drop were probably not serious. 

In previous simulations, using the EVET model, a striking difference between the computed 
and experimental results is the undershoot in pressure at the closed end seen in the experiment, 
but not present in the EVET simulation. In the experiment, when the pressure wave reached 
the closed end, the pressure dropped to approx. 1.5 MPa, and then rose to near 3 MPa within a 
few milliseconds. This undershoot is attributed to departures from local thermal equilibrium, 
and this is borne out by the EVUT results. These show a sudden drop in pressure followed by a 
slower increase. The lowest pressure reached, and the rate of increase, depend on the heat 
transfer times tik (see figure 9); unfortunately, numerical difficulties prevented the use of times 
small enough to match the experimental curve. These difficulties, as noted before, are related 
not to the specific heat transfer model used, but rather to the time scale of the transfer process. 
Similar problems have been encountered in tests using an implicit finite difference code based 
on the characteristic finite difference procedure (Mathers et al. 1976). 

In addition to the case with tif = tig = 5 msec, a number of other cases were tried. Halving tik 
gave a closer fit to the experimental curve, but this run failed near t = 40 msec, well before the 
maximum in the pressure at the closed end had been reached, and a smaller t~k caused earlier 
failure. Larger values of t~k ran successfully, resulting in a deeper pressure minimum and a slower 
rise. Cases in which t i f#  tig failed whenever the smaller of the two became less than a few 
milliseconds. More complicated models for qik, in which rig became smaller with increasing 
IT, - Tk[, also failed under the same conditions. 

The relatively slow heat transfer has other effects besides those noted in the behaviour of 
the pressure at the closed end. In particular, the temperatures of the two phases are found to be 

4 
"6  D- 

v o. 

Exper iment  
. m .  E V E T  

m ' ~  E V U T  t l k=5ms 

. . . .  E V U T  tlk= 2 .5  ms 

L/ 

(] I I I I I 
2 4 6 8 I0 

t (ms )  

Figure 9. Pressure at closed end in second standard problem--experimental, EVET and EVUT (ilk = 5 and 
2.5 msec) results. 
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far from the saturation value, even when the void fraction is substantial. For example, at 
t = 0.005 see, the liquid, saturation and vapour temperatures at the closed end were 236, 153 and 
27°C respectively, and a = 0.72. At t = 0.072 sec, when the pressure at the closed end was 
maximum, these three temperatures were 218, 188 and 115°C, with a=0.87.  The large 
deviations are due to the fact that adiabatic expansion of the vapour dominates the interfacial 
heat transfer. Larger values of t~ led to even greater discrepancies. 

While one might expect the liquid temperature to stay near its original value, the deviations 
from equilibrium for the vapour phase seem unreasonably large. During the late stages of the 
blowdown, it was possible to decrease t~g by a factor of 100 and thereby accelerate the 
approach of Tg to Ts. However, as noted earlier, it was not possible to use such a small value of 
t~g during the earlier part of the run. This suggests that the use of a constant t~s may be 
unrealistic, and that more sophisticated relationships might be desirable. 

Another model, in which the enthalpy equation for the vapour is replaced by h s = hs,(p), has 
been constructed. Note that in this model, the vapour sound speed differs from that in the 
EVUT model, since the vapour is constrained to stay at the saturation line; a8 -2= 
(~pg/ap)+(apJOhg)(dhsJdp) in this model. This results in a vapour sound speed which is 
10--20% lower than in the EVUT model. In the calculations for the second standard problem, 
the two models gave very similar results, except of course for the vapour temperature. This 
indicates that despite the large temperature drop in the vapour in the EVUT model, relatively 
little energy is involved, since its effect on the flow is small. The major effects of the departure 
from thermal equilibrium are those related to the liquid. 

In figure 10 the void fraction a, at a position 1.4 m from the closed end, is plotted as a 
function of time. The curve for the alternative model, in which hg = hgs, is virtually identical 
with that for the EVUT model. It appears that the major part of the discrepancy between 
the simulations and the experiment may be due to phase separation effects (i.e. different velocities 
for liquid and vapour), since the EVET and EVUT results are quite similar. 

I0  

0'8 

0'6 

0"4 

0"2 

0 
0 

F.xperlmtent ' ~:,,~,,~.~..~J" ' 
_ - - -   vuvEI 

I J , , 
o., 0.2 0.3 0.4 

t(s) 

Figure 10. Void fraction a, 1.4 m from closed end, in second standard problem-experimental, EVET and 
EVUT results. 

D I S C U S S I O N  

In addition to its uses for benchmark testing of faster codes, the wave-tracing method has 
considerable usefulness in studying effects related to the choice of mathematical model, 
because of its freedom from most spurious numerical effects. Once such numerical effect which 
is still present is the limitation on tlk imposed by the finite value of At. We might try to 
overcome this limitation in a number of ways. One way is to perform calculations with larger 
values of ti~ and then extrapolate the results to smaller values. This is of questionable accuracy 
in cases "where the flow variables themselves change greatly on a short time scale, as in the 
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second standard problem. Another is to use very small time steps to allow small tik, but this to 
too inefficient for most practical situations. A third way is to use higher-order finite difference 
approximations to the derivatives, again with associated computational costs. Yet another is to 
effect a change of variables in such a way that the offending term is formally removed from the 
enthalpy equation. This is similar in effect to using a derivative model for qik, and has the 
undesirable effect of making the structure of the equations dependent on the model chosen for 
q~. It is not at all clear at present which, if any, of these attempts would be most acceptable. It 
should also be noted that we are trying to represent interphase heat transfer during transients, 
where experimental data relevent to choices for parameters, and functional forms, are missing. 

At any rate, further studies of various formulations for q~k are desirable. In particular, the 
assumption that Ai o~ a ~ g A  used in the present calculations is undoubtedly a poor represen- 
tation of the physical reality, and more advanced formulae are desirable. Indeed, a slightly more 
complicated model was used in practice; at the transition from single-phase to two-phase flow, 
this assumption implies q~I = qis = m~g = 0. In order to achieve non-zero ak, we set ak = 

(~ -- 10 -6) at the onset of local boiling or condensation. (This is effectively similar to assuming 
the existence of a finite level of nucleation sites.) The wave-tracing method seems well-adapted 
to studying the effects of various such formulae, because of its relative lack of numerical 
diffusion effects. 

One numerical problem with this method which is not present in finite difference codes 
is the difficulty in handling rapid transitions from single-phase to two-phase flow, caused 
by the large changes in sound-speed between neighbouring mesh points. These transitions 
are automatically broadened by numerical diffusion, and one way of eliminating the 
difficulty might be to introduce some artifical diffusion. This approach is somewhat similar to 
that of pseudo-viscosity techniques (Richtmyer & Morton 1967). Another way would be to 
replace the rapid transition by an artifical discontinuity, treated like a boiling boundary in the 
EVET model (Hancox & Banerjee 1977). 

The EVUT model has potential applications in situations where rapid changes in a occur, as 
in the second standard problem, and in situations were external heat input prevents the flow 
from reaching local thermal equilibrium, as in the first standard problem (see figure 8). Since the 
major effects of non-equilibrium are due to superheating or subeooling of the liquid phase, the 
model in which the vapour is tied to the saturation line (when a < 1) may be adequate. In cases 
where a significant part of the heat flow is carried by the vapour phase, it is likely that different 
velocities in the two phases will be present. In such cases (e.g. stratified or annular flow), a 
model in which the velocities and pressures of the two phases are different (UVUTUP) may be 
necessary. 

The EVUT model also has applications during the development of more advanced unequal- 
velocity models. The interfacial heat and mass transfer terms in this model will also appear in 
more sophisticated models (such as UVUTUP models). The EVUT model supplies a con- 
venient medium for studying these terms independently of the added complications due to 
unequal velocities and/or pressures. Indeed, it may prove possible to use an accurate solution 
scheme like this one to throw more light on interfacial exchanges, in conjunction with 
experiments in which the assumptions of equal velocities and pressures are satisfied. 

It is interesting to note that, despite the simple formula used for the heat transfer terms q~, 

the EVUT model appears to be capable of calculating the early behaviour of the transient in the 
second problem reasonably well. This suggests that the precise form chosen for q~ may not be 
a critical factor in performing simulations of more complicated experiments with faster 
finite-difference codes. 

S U M M A R Y  

A wave-tracing, or method of characteristics, algorithm has been implemented for the 
EVUT model of one-dimensional two-phase flow. This method has been checked on two 
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standard problems. Agreement with previous calculations, using the EVET model, and using a 
finite difference algorithm for the EVUT model, is satisfactory. This algorithm has greatly 
reduced numerical diffusion effects as compared with finite difference schemes. Therefore, 
despite its slowness, it is useful for benchmark testing of these codes, and for studying various 
models of the interfacial heat transfer process, and it is now being used for these purposes. 
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